Title: Molecular Dynamics Simulation of Melting and Vacancy Movement in Graphene Nanoribbons Authors: Jiuning Hu

نویسندگان

  • Xiulin Ruan
  • Yong P. Chen
چکیده

We have used classical molecular dynamics based on the Brenner potential describing carbon-carbon covalent bonds to study the melting point and vacancy movement in a rectangular graphene nanoribbon. The melting point of the graphene nanoribbon extracted from the numerical simulation is ~3400 K. We also found that two separated vacancies at high temperature (e.g., ~3000 K, below the melting point) can eventually form a stable Stone-Wales-like defect at the edge of the nanoribbon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Classical molecular dynamics based on the Brenner potential and Nosé– Hoover thermostat has been used to study the thermal conductivity and thermal rectification (TR) of graphene nanoribbons. An appreciable TR effect in triangular and trapezoidal nanoribbons was found. The TR factor is over 20 % even for 23 nm long monolayer triangular nanoribbons. The TR in graphene nanoribbons may enable nove...

متن کامل

Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons

graphene nanoribbons Jiuning Hu, 2, a) Yan Wang, Ajit Vallabhaneni, Xiulin Ruan, 2 and Yong P. Chen 2, 1, b) School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA Department of Ph...

متن کامل

Transport studies in graphene-based materials and structures

Hu, Jiuning Ph.D., Purdue University, May 2015. Transport studies in graphenebased materials and structures. Major Professor: Yong P. Chen. Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some the...

متن کامل

Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of t...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009